1,572 research outputs found

    Factors modifying the risk for developing acute skin toxicity after whole-breast intensity modulated radiotherapy

    Get PDF
    Background: After breast-conserving radiation therapy most patients experience acute skin toxicity to some degree. This may impair patients' quality of life, cause pain and discomfort. In this study, we investigated treatment and patient-related factors, including genetic polymorphisms, that can modify the risk for severe radiation-induced skin toxicity in breast cancer patients. Methods: We studied 377 patients treated at Ghent University Hospital and at ST.-Elisabeth Clinic and Maternity in Namur, with adjuvant intensity modulated radiotherapy (IMRT) after breast-conserving surgery for breast cancer. Women were treated in a prone or supine position with normofractionated (25 x 2 Gy) or hypofractionated (15 x 2.67 Gy) IMRT alone or in combination with other adjuvant therapies. Patient-and treatment-related factors and genetic markers in regulatory regions of radioresponsive genes and in LIG3, MLH1 and XRCC3 genes were considered as variables. Acute dermatitis was scored using the CTCAEv3.0 scoring system. Desquamation was scored separately on a 3-point scale (0-none, 1-dry, 2-moist). Results: Two-hundred and twenty patients (58%) developed G2+ dermatitis whereas moist desquamation occurred in 56 patients (15%). Normofractionation (both p = D (p = 0.001 and p = 0.043) and concurrent hormone therapy (p = 0.001 and p = 0.037) were significantly associated with occurrence of acute dermatitis and moist desquamation, respectively. Additional factors associated with an increased risk of acute dermatitis were the genetic variation in MLH1 rs1800734 (p=0.008), smoking during RT (p = 0.010) and supine IMRT (p = 0.004). Patients receiving trastuzumab showed decreased risk of acute dermatitis (p < 0.001). Conclusions: The normofractionation schedule, supine IMRT, concomitant hormone treatment and patient related factors (high BMI, large breast, smoking during treatment and the genetic variation in MLH1 rs1800734) were associated with increased acute skin toxicity in patients receiving radiation therapy after breast-conserving surgery. Trastuzumab seemed to be protective

    XRCC1 codon 399Gln polymorphism is associated with radiotherapy-induced acute dermatitis and mucositis in nasopharyngeal carcinoma patients

    Get PDF
    BACKGROUND: To evaluate the association between single nucleotide polymorphisms (SNPs) at the 194 and 399 codons of XRCC1, and the risk of severe acute skin and oral mucosa reactions in nasopharyngeal carcinoma patients in China. METHODS: 114 patients with nasopharyngeal carcinoma were sequentially recruited in this study. Heparinized peripheral blood samples were taken for SNPs analysis before the start of radiation treatment. SNPs in XRCC1 (194Arg/Trp and 399Arg/Gln) gene were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Dermatitis at upper neck and oral mucositis were clinically recorded according to the Common Terminology Criteria for Adverse Events v.3.0. RESULTS: The variant allele frequencies were 0.289 for XRCC1 194Trp and 0.263 for XRCC1 399Gln. Of the 114 patients, 24 experienced grade 3 acute dermatitis and 48 had grade 3 acute mucositis. The XRCC1 399Arg/Gln was significantly associated with the development of grade 3 dermatitis (Odds Ratio, 2.65; 95% CI, 1.04–6.73; p = 0.037, χ2 = 4.357). In addition, it was also associated with higher incidence of grade 3 mucositis with a borderline statistical significance (Odds Ratio, 2.11; 95% CI, 0.951–4.66; p = 0.065, χ2 = 3.411). The relationship between XRCC1 194Arg/Trp and acute dermatitis, and mucositis was not found. CONCLUSIONS: Our investigation shows, for the first time, that patients with the XRCC1 399Arg/Gln genotype were more likely to experience severe acute dermatitis and oral mucositis. With further validation, the information can be used to determine personalized radiotherapy strategy

    Predicting normal tissue toxicity in radiotherapy : can we improve clinical decision-making?

    Get PDF
    Variation exists between individuals in the severity of their normal tissue response to radiotherapy. This can broadly be related to radiation dosimetric variables, adjuvant cancer treatments and factors inherent to the patient, including genetics. In this PhD research, factors were identified that influence the development of acute toxicity in breast and prostate cancer patients. In addition, integrated prediction models, including genetics, were developed that are able to predict which cancer patients are most likely to develop late urinary toxicity in prostate cancer patients

    Single nucleotide polymorphisms in ATM, TNF-α and IL6 genes and risk of radiotoxicity in breast cancer patients

    Get PDF
    Although oncological therapies have improved in the last decades, breast cancer (BC) remains a serious health problem worldwide. Radiotherapy (RT) is one of the most frequently used treatments for cancer aimed at eliminating tumor cells. However, it can also alter the surrounding normal tissue, especially the skin, and patient reactions may vary as a result of extrinsic and intrinsic factors. We evaluated the association of gene polymorphisms ATM Asp1853Asn, IL-6 G-174C and TNF-α G-308A involved in central phenotype pathways and development of individual radiosensitivity in BC patients with an exacerbated response to RT. Although univariate analysis results did not show a significant association with this trait, the interaction analysis between polymorphisms showed an increased risk of patients presenting wild-type TNF-α G-308A genotype and mutant IL-6 G-174C genotype, and heterozygous TNF-α G-308A genotype and heterozygous IL-6G-174C genotype. On the other hand, our results showed that breast size and patient age influenced the determination of RT-associated effects. Considering that the trait is multifactorial, other significant elements for the determination of individual radiosensitivity should be considered, together with the establishment of specific polymorphic variants.Centro de Investigaciones Inmunológicas Básicas y AplicadasInstituto de Genética Veterinari

    Single nucleotide polymorphisms in ATM, TNF-α and IL6 genes and risk of radiotoxicity in breast cancer patients

    Get PDF
    Although oncological therapies have improved in the last decades, breast cancer (BC) remains a serious health problem worldwide. Radiotherapy (RT) is one of the most frequently used treatments for cancer aimed at eliminating tumor cells. However, it can also alter the surrounding normal tissue, especially the skin, and patient reactions may vary as a result of extrinsic and intrinsic factors. We evaluated the association of gene polymorphisms ATM Asp1853Asn, IL-6 G-174C and TNF-α G-308A involved in central phenotype pathways and development of individual radiosensitivity in BC patients with an exacerbated response to RT. Although univariate analysis results did not show a significant association with this trait, the interaction analysis between polymorphisms showed an increased risk of patients presenting wild-type TNF-α G-308A genotype and mutant IL-6 G-174C genotype, and heterozygous TNF-α G-308A genotype and heterozygous IL-6G-174C genotype. On the other hand, our results showed that breast size and patient age influenced the determination of RT-associated effects. Considering that the trait is multifactorial, other significant elements for the determination of individual radiosensitivity should be considered, together with the establishment of specific polymorphic variants.Fil: Cordoba, Elisa Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentina. Universidad Nacional de la Plata, Facultad de Ciencias Exactas; ArgentinaFil: Lacunza, Ezequiel. Universidad Nacional de La Plata. Facultad de Ciencias Médicas, CINIBA- Centro de Investigaciones Inmunológicas Básicas y Aplicadas; ArgentinaFil: Abba, Martín Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Médicas, CINIBA- Centro de Investigaciones Inmunológicas Básicas y Aplicadas; ArgentinaFil: Fernández, Eduardo. 21st Century Oncology, Inc.; Estados UnidosFil: Güerci, Alba Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentina. Universidad Nacional de la Plata, Facultad de Ciencias Exactas; Argentin

    Single nucleotide polymorphisms in ATM, TNF-α and IL6 genes and risk of radiotoxicity in breast cancer patients

    Get PDF
    Although oncological therapies have improved in the last decades, breast cancer (BC) remains a serious health problem worldwide. Radiotherapy (RT) is one of the most frequently used treatments for cancer aimed at eliminating tumor cells. However, it can also alter the surrounding normal tissue, especially the skin, and patient reactions may vary as a result of extrinsic and intrinsic factors. We evaluated the association of gene polymorphisms ATM Asp1853Asn, IL-6 G-174C and TNF-α G-308A involved in central phenotype pathways and development of individual radiosensitivity in BC patients with an exacerbated response to RT. Although univariate analysis results did not show a significant association with this trait, the interaction analysis between polymorphisms showed an increased risk of patients presenting wild-type TNF-α G-308A genotype and mutant IL-6 G-174C genotype, and heterozygous TNF-α G-308A genotype and heterozygous IL-6G-174C genotype. On the other hand, our results showed that breast size and patient age influenced the determination of RT-associated effects. Considering that the trait is multifactorial, other significant elements for the determination of individual radiosensitivity should be considered, together with the establishment of specific polymorphic variants.Centro de Investigaciones Inmunológicas Básicas y AplicadasInstituto de Genética Veterinari

    Radiogenomics: A Personalized Strategy for Predicting Radiation-Induced Dermatitis

    Get PDF
    Although radiation therapy (RT) planning and execution techniques have evolved to minimize radiotoxicity to a considerable extent, adjacent tissues still receive a substantial dose of ionizing radiation, resulting in radiotoxicities that may limit patients’ quality of life. Depending on the location of tissue injury and the severity of the cellular response, there may also be a need to interrupt RT, thus interfering with the prognosis of the disease. There is a hypothesis that genetic factors may be associated with individual radiosensitivity. Recent studies have shown that genetic susceptibility accounts for approximately 80% of the differences in toxicity. The evolution of genomic sequencing techniques has enabled the study of radiogenomics, which is emerging as a fertile field to evaluate the role of genetic biomarkers. Radiogenomics focuses on the analysis of genetic variations and radiation responses, including tumor responses to RT and susceptibility to toxicity in adjacent tissues. Several studies involving polymorphisms have been conducted to assess the ability to predict RT-related acute and chronic skin toxicities, particularly in patients with breast and head and neck cancers. The purpose of this chapter is to discuss how radiogenomics can help in the management of radiotoxicities, particularly radiodermatitis

    A Bioinformatics Filtering Strategy for Identifying Radiation Response Biomarker Candidates

    Get PDF
    The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response

    The influence of dna repair genes variants

    Get PDF
    Funding: This research was funded by FCT—Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through Project UID/BIM/00009/2019—Centre for Toxicogenomics and Human Health.Radioiodine therapy with131I remains the mainstay of standard treatment for well-differentiated thyroid cancer (DTC). Prognosis is good but concern exists that131I-emitted ionizing radiation may induce double-strand breaks in extra-thyroidal tissues, increasing the risk of secondary malignancies. We, therefore, sought to evaluate the induction and 2-year persistence of micronuclei (MN) in lymphocytes from 26131I-treated DTC patients and the potential impact of nine homologous recombination (HR), non-homologous end-joining (NHEJ), and mismatch repair (MMR) polymorphisms on MN levels. MN frequency was determined by the cytokinesis-blocked micronucleus assay while genotyping was performed through pre-designed TaqMan® Assays or conventional PCR-restriction fragment length polymorphism (RFLP). MN levels increased significantly one month after therapy and remained persistently higher than baseline for 2 years. A marked reduction in lymphocyte proliferation capacity was also apparent 2 years after therapy. MLH1 rs1799977 was associated with MN frequency (absolute or net variation) one month after therapy, in two independent groups. Significant associations were also observed for MSH3 rs26279, MSH4 rs5745325, NBN rs1805794, and tumor histotype. Overall, our results suggest that131I therapy may pose a long-term challenge to cells other than thyrocytes and that the individual genetic profile may influence131I sensitivity, hence its risk-benefit ratio. Further studies are warranted to confirm the potential utility of these single nucleotide polymorphisms (SNPs) as radiogenomic biomarkers in the personalization of radioiodine therapy.publishersversionpublishe
    corecore